Nuclear Physics And Radioactivity Question 453

Question: In a sample of rock, the ratio of $ ^{206}Pb $ to $ ^{238}U $ nuclei is found to be 0.5. The age in year of the rock is (given half-life of $ ,U^{238} $ is $ 4.5\times 10^{9} $ years)

Options:

A) $ 2.25\times 10^{9} $

B) $ 4.5\times 10^{9}ln3 $

C) $ 4.5\times 10^{9}\frac{ln( \frac{3}{2} )}{ln2} $

D) $ 2.25\times 10^{9}ln( \frac{3}{2} ) $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Suppose an initial radionuclide I decays to a final product F with a half- life $ {T_{1/2}}. $ At any time, $ N_{1}=N_{0}{{e}^{-\lambda t}} $ Number of product nuclei $ =N_{F}=N_{0}-N_{I} $ $ \frac{N_{F}}{N_{I}}=\frac{N_{0}-N_{I}}{N_{I}}=( \frac{N_{0}}{N_{I}}-I ) $ $ \frac{N_{0}}{N_{I}}=( 1+\frac{N_{F}}{N_{I}} )=1+0.5=1.5 $
$ \therefore ,\frac{{T_{1/2}}In(1.5)}{In2}=4.5\times 10^{9}\frac{\ell n( \frac{3}{2} )}{\ell n2}year $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें