Nuclear Physics And Radioactivity Question 458

Question: The ratio of number of atoms of $ ^{14}C $ to $ ^{12}C $ in living matter is measured to be $ 1.3\times {{10}^{-12}} $ at the present time. A 12 g sample of carbon produces 180 decays/min due to the small amount of $ ^{14}C $ in it. The half-life of $ ^{14}C $ is nearly [1 year $ =3.15\times 10^{7}s $ ]

Options:

A) 574 years

B) 5740 years

C) 2870 years

D) 287 years

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ \frac{14_{C}}{12_{C}}=1.3\times {{10}^{-12}} $ $ 12g $ contain $ 6.022\times 10^{23} $ atoms No. atoms of $ 14_{C}=6.022\times 10^{23}\times 1.3\times {{10}^{-12}} $ $ =7.8286\times 10^{11}\Rightarrow N=N_{0}{{e}^{-\lambda t}} $ $ -\frac{dN}{dt}=N_{0}{{e}^{-\lambda t}}\times \lambda \Rightarrow -\frac{dN}{dt}=N\times \lambda $ $ \frac{180}{60}=7.8286\times 10^{11}\times \lambda $
$ \Rightarrow \frac{1}{\lambda }=\frac{7.8286\times 10^{11}}{3}\Rightarrow \lambda =0.3832\times {{10}^{-11}} $ $ {t_{1/2}}=\frac{0691}{\lambda }=\frac{0.692}{0.3832\times {{10}^{-11}}}=1.80\times 10^{11}\sec $ Half life $ =1.8032\times 10^{11}\sec =0.5740\times 10^{4} $ year=5740 years.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें