Nuclear Physics And Radioactivity Question 475

Question: A nucleus at rest undergoes a decay emitting an $ \alpha - $ particle of de-Broglie wavelength $ \lambda =5.76\times {{10}^{-15}}m. $ If the mass of the daughter nucleus is $ 223.610 $ amu and that of the $ \alpha - $ particle is $ 4.002,amu, $ determine the mass of the parent nucleus inamu. $ (1,amu=931.470MeV/c^{2}]. $

Options:

A) $ 227.62amu $

B) $ 112.11amu $

C) $ 90.3amu $

D) $ 23.8amu $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] By conservation of momentum, we have $ 0={{\vec{P}}{\alpha }}+{{\vec{P}}{d}}\Rightarrow {{\vec{P}}{\alpha }}=-{{\vec{P}}{d}} $ or $ {P_{\alpha }}=P_{d}=P $ The kinetic energy released in the process $ K={K_{\alpha }}+K_{p}=\frac{P^{2}}{2{m_{\alpha }}}+\frac{P^{2}}{2m_{d}} $ $ =\frac{P^{2}}{2{m_{\alpha }}}( 1+\frac{{m_{\alpha }}}{m_{d}} )=\frac{{{(h/\lambda )}^{2}}}{2{m_{\alpha }}}( 1+\frac{{m_{\alpha }}}{m_{d}} ) $ After substituting the given values, we get $ K=6.25MeV $ If $ m_{P} $ is the mass of the parent nucleus, then $ K+({m_{\alpha }}+m_{d})c^{2}=m_{p}c^{2} $ or $ 6.25+(223.61+4.002)c^{2}=m_{p}c^{2} $ After simplifying, we get $ m_{p}=227.62 $ amu.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें