Nuclear Physics And Radioactivity Question 480

Question: The count rate from a radioactive sample falls from $ 4.0\times 10^{6} $ per second to $ 1\times 10^{6} $ per second in 20 hour. What will be the count rate, 100 hour after the beginning?

Options:

A) $ 3.91\times 10^{3}se{{c}^{-1}} $

B) $ 5.81\times 10^{4}se{{c}^{-1}} $

C) $ 6.22\times 10^{5}se{{c}^{-1}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] If $ A_{0} $ is the initial activity of radioactive sample then activity at any time $ A=A_{0}{{e}^{-\lambda t}} $ or $ 1\times 10^{6}=4\times 10^{6}{{e}^{-\lambda \times 20}} $ or $ {{e}^{-20\lambda }}=\frac{1}{4} $ The count rate after 100 hour is given by $ A’=A_{0}{{e}^{-\lambda \times 100}}=A_{0}{{e}^{-100\lambda }}=A_{0}{{[{{e}^{-20\lambda }}]}^{5}} $ $ =4\times 10^{6}{{[ \frac{1}{4} ]}^{5}}=3.91\times 10^{3} $ per second



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें