Optics Question 110

Question: We wish to see inside an atom. Assuming the atom to have a diameter of 100 pm, this means that one must be able to resolved a width of say 10 p.m. If an electron microscope is used, the minimum electron energy required is about

[AIIMS 2004]

Options:

A) 1.5 KeV

B) 15 KeV

C) 150 KeV

D) 1.5 KeV

Show Answer

Answer:

Correct Answer: B

Solution:

Wave length of the electron wave be $ 10\times {{10}^{-12}}m $ , Using $ \lambda =\frac{h}{\sqrt{2mE}} $

$ \Rightarrow E=\frac{h^{2}}{{{\lambda }^{2}}\times 2m} $

$ =\frac{{{(6.63\times {{10}^{-34}})}^{2}}}{{{(10\times {{10}^{-12}})}^{2}}\times 2\times 9.1\times {{10}^{-31}}}Joule $

$ =\frac{{{(6.63\times {{10}^{-34}})}^{2}}}{{{(10\times {{10}^{-12}})}^{2}}\times 2\times 9.1\times {{10}^{-31}}\times 1.6\times {{10}^{-19}}}eV $ = 15.1 KeV.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें