Optics Question 127

Question: An optical fibre consists of core of m­1 surrounded by a cladding of m2 < m1. A beam of light enters from air at an angle a with axis of fibre. The highest a for which ray can be travelled through fibre is

Options:

A) $ {{\cos }^{-1}}\sqrt{\mu _{2}^{2}-\mu _{1}^{2}} $

B) $ {{\sin }^{-1}}\sqrt{\mu _{1}^{2}-\mu _{2}^{2}} $

C) $ {{\tan }^{-1}}\sqrt{\mu _{1}^{2}-\mu _{2}^{2}} $

D) $ {{\sec }^{-1}}\sqrt{\mu _{1}^{2}-\mu _{2}^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

Here the requirement is that $ i>c $

$ \Rightarrow \sin i>\sin c\Rightarrow \sin i>\frac{{\mu _{2}}}{{\mu _{1}}} $ …(i) From Snell’s law $ {\mu _{1}}=\frac{\sin \alpha }{\sin r} $ ..(ii) Also in $ \Delta OBA $

$ r+i=90^{o} $

$ \Rightarrow r=(90-i) $ Hence from equation (ii) $ \sin \alpha ={\mu _{1}}\sin (90-i) $

$ \Rightarrow \cos i=\frac{\sin \alpha }{{\mu _{1}}} $

$ \sin i=\sqrt{1-{{\cos }^{2}}i} $

$ =\sqrt{1-{{( \frac{\sin \alpha }{{\mu _{1}}} )}^{2}}} $ ..(iii) From equation (i) and (iii) $ \sqrt{1-{{( \frac{\sin \alpha }{{\mu _{1}}} )}^{2}}}>\frac{{\mu _{2}}}{{\mu _{1}}} $

Therefore $ {{\sin }^{2}}\alpha <(\mu _{1}^{2}-\mu _{2}^{2}) $

Therefore $ \sin \alpha <\sqrt{\mu _{1}^{2}-\mu _{2}^{2}} $

$ {\alpha _{\max }}={{\sin }^{-1}}\sqrt{\mu _{1}^{2}-\mu _{2}^{2}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें