Optics Question 140

Question: In Young’s double slit experiment, white light is used. The separation between the slits is b. The screen is at a distance d (d» b) from the slits. Some wavelengths are missing exactly in front of one slit. These wavelengths are

[IIT 1984; AIIMS 1995]

Options:

A) $ \lambda =\frac{b^{2}}{d} $

B) $ \lambda =\frac{2b^{2}}{d} $

C) $ \lambda =\frac{b^{2}}{3d} $

D) $ \lambda =\frac{2b^{2}}{3d} $

Show Answer

Answer:

Correct Answer: A

Solution:

Path difference between the rays reaching infront of slit S1 is. $ S _{1}P-S _{2}P={{(b^{2}+d^{2})}^{1/2}}-d $ For distructive interference at P $ S _{1}P-S _{2}P=\frac{(2n-1)\lambda }{2} $ i.e., $ {{(b^{2}+d^{2})}^{1/2}}-d=\frac{(2n-1)\lambda }{2} $

$ \Rightarrow d{{( 1+\frac{b^{2}}{d^{2}} )}^{1/2}}-d=\frac{(2n-1)\lambda }{2} $

$ \Rightarrow d( 1+\frac{b^{2}}{2d^{2}}+…… )-d=\frac{(2n-1)\lambda }{2} $ (Binomial Expansion)

$ \Rightarrow \frac{b}{2d}=\frac{(2n-1)\lambda }{2}\Rightarrow \lambda =\frac{b^{2}}{(2n-1)d} $ For $ n=1,\ 2…………,\ \lambda =\frac{b^{2}}{d},\ \frac{b^{2}}{3d} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें