Optics Question 165

Question: A wavefront presents one, two and three HPZ at points A, B and C respectively. If the ratio of consecutive amplitudes of HPZ is 4 : 3, then the ratio of resultant intensities at these point will be

Options:

A) 169 : 16 : 256

B) 256 : 16 : 169

C) 256 : 16 : 196

D) 256 : 196 : 16

Show Answer

Answer:

Correct Answer: B

Solution:

$ I _{A}=R _{1}^{2} $

$ I _{B}={{(R _{1}-R _{2})}^{2}}=R _{1}^{2}{{( 1-\frac{R _{2}}{R _{1}} )}^{2}}=R _{1}^{2}{{( 1-\frac{3}{4} )}^{2}}=\frac{R _{1}^{2}}{16} $

$ I _{C}={{(R _{1}-R _{2}+R _{3})}^{2}} $

$ =R _{1}^{2}{{( 1-\frac{R _{2}}{R _{1}}+\frac{R _{3}}{R _{1}} )}^{2}} $

$ =R _{1}^{2}{{( 1-\frac{R _{2}}{R _{1}}+\frac{R _{3}}{R _{2}}\times \frac{R _{2}}{R _{1}} )}^{2}} $

$ =R _{1}^{2}{{( 1-\frac{3}{4}+\frac{3}{4}\times \frac{3}{4} )}^{2}} $

$ ={{( \frac{13}{16} )}^{2}}R _{1}^{2}=\frac{169}{256}R _{1}^{2} $

$ \therefore I _{A}:I _{B}:I _{C}=R _{1}^{2}:\frac{R _{1}^{2}}{16}:\frac{169}{256}R _{1}^{2}=256:16:169 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें