Optics Question 186

Question: A beam of plane polarized light falls normally on a polarizer of cross sectional area $ 3\times {{10}^{-4}}m^{2} $ . Flux of energy of incident ray in 10?3 W. The polarizer rotates with an angular frequency of 31.4 rad/sec. The energy of light passing through the polarizer per revolution will be

Options:

A) 10?4 Joule

B) 10?3 Joule

C) 10?2 Joule

D) 10?1 Joule

Show Answer

Answer:

Correct Answer: A

Solution:

Using Matus law, $ I=I _{0}{{\cos }^{2}}\theta $

As here polariser is rotating i.e. all the values of q are possible.

$ I _{av}=\frac{1}{2\pi }\int _{0}^{2\pi }{Id\theta }=\frac{1}{2\pi }\int _{0}^{2\pi }{I _{0}{{\cos }^{2}}\theta d\theta } $

On integration we get $ I _{av}=\frac{I _{0}}{2} $

where $ I _{0}=\frac{\text{Energy}}{\text{Area }\times \text{ Time}}=\frac{p}{A}=\frac{{{10}^{-3}}}{3\times {{10}^{-4}}}=\frac{10}{3}\frac{Watt}{m^{2}} $

$ I _{av}=\frac{1}{2}\times \frac{10}{3}=\frac{5}{3}Watt $

and Time period $ T=\frac{2\pi }{\omega }=\frac{2\times 3.14}{31.4}=\frac{1}{5}sec $

Energy of light passing through the polariser per revolution $ =I _{av}\times \text{Area}\times T $

$ =\frac{5}{3}\times 3\times {{10}^{-4}}\times \frac{1}{5} $

$ ={{10}^{-4}}J. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें