Optics Question 456

Question: A rectangular glass slab ABCD, of refractive index $ n _{1} $ is immersed in water of refractive index $ n _{2}(n _{1}>n _{2}) $ . A ray of light in incident at the surface AB of the slab as shown. The maximum value of the angle of incidence $ {\alpha _{\max }} $ such that the ray comes out only from the other surface CD is given by

Options:

A) $ {{\sin }^{-1}}[ \frac{n _{1}}{n _{2}}\cos ( {{\sin }^{-1}}\frac{n _{2}}{n _{1}} ) ] $

B) $ {{\sin }^{-1}}[ n _{1}\cos ( {{\sin }^{-1}}\frac{1}{n _{2}} ) ] $

C) $ {{\sin }^{-1}}( \frac{n _{1}}{n _{2}} ) $

D) $ {{\sin }^{-1}}( \frac{n _{2}}{n _{1}} ) $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Ray comes out from CD, means rays after refraction form AB get, total internally reflected at AD $ \frac{n _{1}}{n _{2}}=\frac{\sin {a _{\max }}}{\sin r _{1}}\Rightarrow {a _{\max }}={{\sin }^{-1}}[ \frac{n _{1}}{n _{2}}\sin r _{1} ] $ …(i)

Also $ r _{1}+r _{2}=90{}^\circ \Rightarrow r _{1}=90-r _{2}=90-c $

$ r _{1}=90-{{\sin }^{-1}}( \frac{1}{2{\mu _{2}}} )\Rightarrow r _{1}=90-{{\sin }^{-1}}( \frac{n _{2}}{n _{1}} ) $ …(ii)

Hence form equations (i) and (ii) $ {a _{\max }}={{\sin }^{-1}}[ \frac{n _{1}}{n _{2}}\sin { 90-{{\sin }^{-1}}\frac{n _{2}}{n _{1}} } ] $

$ ={{\sin }^{-1}}[ \frac{n _{1}}{n _{2}}\cos ( {{\sin }^{-1}}\frac{n _{2}}{n _{1}} ) ] $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें