Optics Question 472

Question: In Young’s double slit experiment, one of the slit is wider than other, so that amplitude of the light from one slit is double of that from other slit. If $ I _{m} $ be the maximum intensity, the resultant intensity $ I $ when they interfere at phase difference $ \phi $ is given by

Options:

A) $ \frac{I _{m}}{9}(4+5cos\phi ) $

B) $ \frac{I _{m}}{3}( 1+2cos^{2}\frac{\phi }{2} ) $

C) $ \frac{I _{m}}{5}( 1+4cos^{2}\frac{\phi }{2} ) $

D) $ \frac{I _{m}}{9}( 1+8cos^{2}\frac{\phi }{2} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] It is given, $ A _{2}=2A _{1} $

We know, intensity $ \propto {{( Amplitude )}^{2}} $

Hence $ \frac{I _{2}}{I _{1}}={{( \frac{A _{2}}{A _{1}} )}^{2}}={{( \frac{2A _{1}}{A _{1}} )}^{2}}=4 $

$ \Rightarrow I _{2}=4I _{1} $

Maximum intensity, $ I _{m}={{( \sqrt{I _{1}}+\sqrt{I _{2}} )}^{2}} $

$ ={{( \sqrt{I _{1}}+\sqrt{4I _{1}} )}^{2}}={{( 3\sqrt{I _{1}} )}^{2}}=9I _{1} $

Hence $ I _{1}=\frac{I _{m}}{9} $

Resultant intensity, $ I=I _{1}+I _{2}+2\sqrt{I _{1}I _{2}}\cos \phi $

$ =I _{1}+4I _{1}+2\sqrt{I _{1}(4I _{1})}\cos \phi $

$ =5I _{1}+4I _{1}\cos \phi =I _{1}+4I _{1}+4I _{1}\cos \phi $

$ =I _{1}+4I _{1}(1+cos\phi ) $

$ =I _{1}+8I _{1}{{\cos }^{2}}\phi $

$ ( \therefore 1+\cos \phi =2{{\cos }^{2}}\frac{\phi }{2} ) $

$ I=\frac{I _{m}}{9}( 1+8cso^{2}\frac{\phi }{2} ) $ Putting the value of $ I _{1} $ from eqn. (i), we get $ I=\frac{I _{m}}{9}( 1+8{{\cos }^{2}}\frac{\phi }{2} ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें