Optics Question 475

Question: In a YDSE light of wavelength $ \lambda =5000 $

$ \overset{\text{o}}{\mathop{\text{A}}} $ is used which emerges in phase from two slits a distance $ d=3\times {{10}^{-7}}m $ apart. A transparent sheet of thickness $ t=1.5\times {{10}^{-7}}m $ , is refractive index n = 1.17, is placed over one of the slits. Where does the central maxima of the interference now appear?

Options:

A) $ \frac{D(\mu -1)t}{2d} $

B) $ \frac{2D(\mu -1)t}{d} $

C) $ \frac{D(\mu +1)t}{d} $

D) $ \frac{D(\mu -1)t}{d} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] The path difference introduced due to introduction of transparent sheet is given by

$ \Delta x=(m-1)t. $

If the central maxima occupies position of nth fringe, then $ (\mu -1)t=n\lambda =dsin\theta $

$ \sin \theta =\frac{(\mu -1)t}{d}=\frac{(1.17-1)\times 1.5\times {{10}^{-7}}}{3\times {{10}^{-7}}}=0.085 $

Hence the angular position of central maxima is $ \theta ={{\sin }^{-1}}(0.085)=4.88{}^\circ $

For small angles $ \sin \theta \simeq \theta \simeq \tan \theta $

$ \tan \theta =\frac{y}{D} $

$ \frac{y}{D}=\frac{(\mu -1)t}{d} $ Shift of central maxima is $ y=\frac{D(\mu -1)t}{d} $

This formula can be used if D is given.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें