Optics Question 801

Question: A diver looking up through the water sees the outside world contained in a circular horizon, the refractive index of water is $ \frac{4}{3} $ , and the diver’s eyes are 15 cm below the surface of water. Then the radius of the circle is:

Options:

A) $ 15\times 3\times \sqrt{5}cm $

B) $ 15\times 3\sqrt{7}cm $

C) $ \frac{15\times \sqrt{7}}{3}cm $

D) $ \frac{15\times 3}{\sqrt{7}}cm $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Given, $ u=\frac{4}{3}h=15cm $

$ \frac{\sin 90{}^\circ }{\sin C}=\mu \Rightarrow \sin C=\frac{1}{\mu }=\frac{R}{\sqrt{R^{2}+h^{2}}}=\frac{3}{4} $

$ \Rightarrow 16R^{2}=9R^{2}+h^{2}\text{ or, }7R^{2}\text{ =9}{{h}^{2}} $

$ \text{or, }R=\frac{3}{\sqrt{7}}h=\frac{3}{\sqrt{7}}\times 15cm $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें