Optics Question 806

Question: A point light source is moving with a constant velocity v inside a transparent thin spherical shell of radius R, which is filled with a transparent liquid. If at t=0 light source is at the center of the sphere, then at what time a thin dark ring will be visible for an observer outside the sphere. The refractive index of liquid with respect to that of shell is $ \sqrt{2} $ .

Options:

A) $ \frac{R}{\sqrt{2}V} $

B) $ \frac{R}{2V} $

C) $ \frac{R}{3V} $

D) $ \frac{R}{\sqrt{3}V} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] This dark ring will be visible if ray from source gets total internal reflection from the spherical shell.

Let the source at any instant be at point P then at point Q ray will be totally reflected if $ \theta $ is equal to or greater than critical angle. If QP is equal to x, then $ z=\cos \theta =\frac{R^{2}+x^{2}-v^{2}t^{2}}{2Rx} $

For $ \theta $ to be minimum $ \frac{dx}{dy}=\frac{2x( 2Rx )-2R( R^{2}+x^{2}-v^{2}t^{2} )}{4R^{2}x^{2}}=0 $

$ \Rightarrow x=\sqrt{R^{2}-v^{2}t^{2}} $

So, $ \cos \theta =\frac{2( R^{2}-v^{2}t^{2} )}{2R\sqrt{R^{2}-v^{2}t^{2}}}=\frac{\sqrt{R^{2}v^{2}t^{2}}}{R} $

For no light come out, $ \sin \theta \ge \frac{1}{\sqrt{2}}\text{ or }\theta \ge 45{}^\circ $

$ \frac{\sqrt{R^{2}-v^{2}t^{2}}}{R}=\frac{1}{\sqrt{2}};$

$\text{ }t=\frac{R}{\sqrt{2}V} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें