Optics Question 845

Question: From a medium of index of refraction $ n _{1} $ , monochromatic light of wavelength $ \lambda $ is incident normally on a thin film of uniform thickness L $ (whereL>0.1\lambda ) $ and index of refraction $ n _{2} $ . The light transmitted by the film travels into a medium with refractive index $ n _{3} $ .The value of minimum film thickness when maximum light is transmitted If $ (n _{1}<n _{2}<n _{3})$ is

Options:

A) $ \frac{n _{1}\lambda }{2n _{2}} $

B) $ \frac{n _{1}\lambda }{4n _{2}} $

C) $ \frac{\lambda }{4n _{2}} $

D) $ \frac{\lambda }{2n _{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Equation of path difference form maxima in transmission (or weak reflection)

$ \Delta P _{opt}=2n _{2}L=\frac{{\lambda _{vacuum}}}{2},\frac{3{\lambda _{vacuum}}}{2}…. $

$ \Rightarrow 2( \frac{n _{2}}{n _{1}} ) $

$ L=\frac{\lambda }{2} $ , $ \frac{3\lambda }{2}……\Rightarrow L=\frac{\lambda }{4n _{2}} $

(notice that $ \lambda $ = wavelength in medium is related to $ {\lambda _{vacuum}} $ as, $ {\lambda _{vacuum}}=n _{1}\lambda $ )



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें