Optics Question 947

Question: A ray incident at a point at an angle of incidence of $ 60^{o}, $ enters a glass sphere of refractive index $ n=\sqrt{3} $ and is reflected and refracted at the further surface of the sphere. The angle between the reflected and refracted rays at this surface is

Options:

A) $ 50{}^\circ $

B) $ 60{}^\circ $

C) $ 90{}^\circ $

D) $ 40{}^\circ $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Refraction at P, $ \frac{\sin 60{}^\circ }{\sin r _{1}}=\sqrt{3} $

$ \Rightarrow $ $ \sin r _{1}=\frac{1}{2} $

$ \Rightarrow $ $ r _{1}=30{}^\circ $ Since, $ r _{2}=r _{1} $

$ \therefore $ $ r _{2}=30{}^\circ $ Refraction at Q, $ \frac{\sin r _{2}}{\sin i _{2}}=\frac{1}{\sqrt{3}} $ Putting $ r _{2}=30^{o}, $ we obtain $ i _{2}=60^{o} $ Reflection at Q, $ r{’ _{2}}=r _{2}=30{}^\circ $

$ \therefore $ $ \alpha =180{}^\circ -(r{’ _{2}}+i _{2}) $ $ =180{}^\circ -(30{}^\circ +60{}^\circ )=90{}^\circ $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें