wave_mechanics interference_and_superposition_of_waves Question 25

Question: The amplitude of a wave represented by displacement equation $ y=\frac{1}{\sqrt{a}}\sin \omega t\pm \frac{1}{\sqrt{b}}\cos \omega t $ will be

[BVP 2003]

Options:

A) $ \frac{a+b}{ab} $

B) $ \frac{\sqrt{a}+\sqrt{b}}{ab} $

C) $ \frac{\sqrt{a}\pm \sqrt{b}}{ab} $

D) $ \sqrt{\frac{a+b}{ab}} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ y=\frac{1}{\sqrt{a}}\sin \omega t\pm \frac{1}{\sqrt{b}}\sin ( \omega t+\frac{\pi }{2} ) $ Here phase difference =$ \frac{\pi }{2} $

$ \therefore $ The resultant amplitude = $ \sqrt{{{( \frac{1}{\sqrt{a}} )}^{2}}+{{( \frac{1}{\sqrt{b}} )}^{2}}}=\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{\frac{a+b}{ab}} $