wave_mechanics interference_and_superposition_of_waves Question 26

Question: Two waves having equations $ x _{1}=a\sin (\omega t+{\varphi _{1}}) $ , $ x _{2}=a\sin (\omega t+{\varphi _{2}}) $ If in the resultant wave the frequency and amplitude remain equal to those of superimposing waves. Then phase difference between them is

[CBSE PMT 2001]

Options:

A) $ \frac{\pi }{6} $

B) $ \frac{2\pi }{3} $

C) $ \frac{\pi }{4} $

D) $ \frac{\pi }{3} $

Show Answer

Answer:

Correct Answer: B

Solution:

Superposition of waves does not alter the frequency of resultant wave and resultant amplitude

Therefore $ a^{2}=a^{2}+a^{2}+2a^{2}\cos \varphi =2a^{2}(1+\cos \varphi ) $

Therefore $ \cos \varphi =-1/2=\cos 2\pi /3 $ $ \varphi =2\pi /3 $