wave_mechanics mock_test_waves_and_acoustics Question 11

Question: The linear density of a vibrating string is$ {{10}^{-4}}kg/m $ . A transverse wave is propagating on the string, which is described by the equation$ y=0.02\sin (x+30t) $ , where $ x $ and$ y $ are in metres and time $ t $ in seconds. Then tension in the string is

Options:

A) 0.09 N

B) 0.36 N

C) 0.9 N

D) 3.6 N

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ y=0.02\sin (x+30t) $ Comparing with standard equation $ y=A\sin (kx+\omega t),\omega =30,k=1 $ Velocity of wave, $ v=\frac{\omega }{k}=\frac{30}{1}=30m/s $ Expression $ v=\sqrt{\frac{T}{m}} $ gives Tension $ T=v^{2}n={{(30)}^{2}}\times {{10}^{-4}}=0.09 $ N