wave_mechanics mock_test_waves_and_acoustics Question 13

Question: The equations of a travelling and stationary waves are $ y _{1}=a\sin (\omega t-kx) $ and$ y _{2}=a\sin kxcos\omega t $ . The phase differences between two points $ x _{1}=\frac{\pi }{4k}andx _{2}=\frac{4\pi }{3k} $ are $ {\phi _{1}} $ and $ {\phi _{2}} $ respectively for two waves, where k is the wave number. The ratio of $ {\phi _{1}}/{\phi _{2}} $ is

Options:

A) 6/7

B) 16/3

C) 12/13

D) 13/12

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ \Delta x=x _{2}-x _{1}=( \frac{4}{3}-\frac{1}{4} )\frac{\pi }{k}=\frac{13}{12}\frac{\pi }{k} $

$ \sin kx _{1}=\sin k( \frac{\pi }{4k} )=\sin \frac{\pi }{4}\ne 0 $

$ \sin kx _{2}=\sin k( \frac{4\pi }{3k} )=\sin ( \pi +\frac{\pi }{3} )\ne 0 $

$ x _{1} $ and $ x _{2} $ are not the nodes $ \frac{2\pi }{k}>\Delta x>\frac{\pi }{k}\Rightarrow \lambda >\Delta x>\frac{\lambda }{2} $ For $ {\phi _{1}}=\pi ,{\phi _{2}}=k(\Delta x)=k( \frac{13\pi }{12k} )=\frac{13\pi }{12} $

$ \frac{{\phi _{1}}}{{\phi _{2}}}=\frac{\pi }{(13\pi /12)}=\frac{12}{13} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें