wave_mechanics mock_test_waves_and_acoustics Question 17

Question: The equation of a wave on a string of linear mass density 0.04 kg/m is given by$ y=0.02(m)sin[ 2\pi ( \frac{t}{0.04(s)}-\frac{x}{0.50(m)} ) ] $ The tension in the string is

Options:

A) 4.0 N

B) 12.5 N

C) 0.5 N

D) 6.25 N

Show Answer

Answer:

Correct Answer: D

Solution:

[d] The given equation of a wave is $ y=0.02\sin [ 2\pi ( \frac{t}{0.04}-\frac{x}{0.50} ) ] $ Compare it with the standard wave equation $ y=A\sin (\omega t-kx) $ We get $ \omega =\frac{2\pi }{0.04}\text{rad}{{s}^{-1}};k=\frac{2\pi }{0.5}\text{rad}{{m}^{-1}} $ Wave velocity,$ v=\frac{\omega }{k}=\frac{( 2\pi /0.04 )}{( 2\pi /0.5 )}m{{s}^{-1}} $ …(i) Also$ v=\sqrt{\frac{T}{\mu }} $ …(ii) Where T is the tension in the string and $ \mu $ .

is the linear mass density here, linear mass density.$ \mu =0.04kg{{m}^{-1}} $ Equating equations (i) and (ii), we get $ \frac{\omega }{k}=\sqrt{\frac{T}{\mu }} $ or $ T=\frac{\mu {{\omega }^{2}}}{k^{2}} $

$ T=\frac{0.04\times {{( \frac{2\pi }{0.04} )}^{2}}}{{{( \frac{2\pi }{0.05} )}^{2}}}=6.25N $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें