Physics And Measurement Question 302

Question: The frequency (f) of a wire oscillating with a length $ \ell $ , in p loops, under a tension T is given by $ f=\frac{P}{2\ell }\sqrt{\frac{T}{\mu }} $ where $ \mu = $ linear density of the wire. If the error made in determining length, tension and linear density be 1%, -2% and 4%, then find the percentage error in the calculated frequency

Options:

A) - 4%

B) - 2%

C) - 1%

D) - 5%

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Given $ f=\frac{\rho }{2\ell }\sqrt{\frac{T}{\mu }} $

Taking log of both sides $ \log f=\log ( \frac{p}{2} )-\log \ell +\frac{1}{2}\log T-\frac{1}{2}\log \mu $

Differentiating partially on both sides,

$ \frac{df}{f}=0-\frac{d\ell }{\ell }+\frac{1}{2}\frac{dT}{T}-\frac{1}{2}\frac{d\mu }{\mu } $

or $ \frac{df}{f}\times 100=( -\frac{d\ell }{\ell }\times 100 )+( \frac{1}{2}\frac{dT}{T}\times 100 )-( \frac{1}{2}\frac{d\mu }{\mu }\times 100 ) $

$ =(-1)+\frac{1}{2}(-2)-\frac{1}{2}(4)=-1-1-2=-4% $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें