Physics And Measurement Question 155

Question: Pressure gradient has the same dimension as that of?

[AFMC 2004]

Options:

A) Velocity gradient

B) Potential gradient

C) Energy gradient

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

Velocity gradient $ =\frac{v}{x}=\frac{[L{{T}^{-1}}]}{[L]}=[{{T}^{-1}}] $

Potential gradient $ =\frac{V}{x}=\frac{[ML^{2}{{T}^{-3}}{{A}^{-1}}]}{[L]} $

$ =[ML{{T}^{-3}}{{A}^{-1}}] $

Energy gradient $ =\frac{E}{x}=\frac{[ML^{2}T^{2}]}{[L]}=[ML{{T}^{-2}}] $

and pressure gradient $ =\frac{P}{x}=\frac{[M{{L}^{-1}}{{T}^{-2}}]}{[L]}=[M{{L}^{-2}}{{T}^{-2}}] $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें