Physics Elasticity Question 159

Question: A rubber cord catapult has cross-sectional area $ 25mm^{2} $ and initial length of rubber cord is $ 10cm. $ It is stretched to $ 5,cm. $ and then released to project a missile of mass $ 5gm. $ Taking $ Y _{rubber}=5\times 10^{8}N/m^{2} $ velocity of projected missile is

[CPMT 2002]

Options:

A) $ 20,m{{s}^{-1}} $

B)$ 100,m{{s}^{-1}} $

C) $ 250,m{{s}^{-1}} $

D)$ 200,m{{s}^{-1}} $

Show Answer

Answer:

Correct Answer: C

Solution:

Potential energy stored in the rubber cord catapult will be converted into kinetic energy of mass. $ \frac{1}{2}mv^{2}=\frac{1}{2}\frac{YAl^{2}}{L} $

Therefore $ v=\sqrt{\frac{YAl^{2}}{mL}} $

$ =\sqrt{\frac{5\times 10^{8}\times 25\times {{10}^{-6}}\times {{(5\times {{10}^{-2}})}^{2}}}{5\times {{10}^{-3}}\times 10\times {{10}^{-2}}}}=250\ m/s $