Physics Elasticity Question 159

A rubber cord catapult has cross-sectional area $ 25mm^{2} $ and initial length of rubber cord is $ 10cm. $ It is stretched to $ 15cm. $ and then released to project a missile of mass $ 5gm. $ Taking $ Y _{rubber}=5\times 10^{8}N/m^{2} $ velocity of projected missile is

[CPMT 2002]

Options:

A) $ 20,m{{s}^{-1}} $

B)$ 100,m{{s}^{-1}} $

C) $ 250,m{{s}^{-1}} $

D)$ 200,m{{s}^{-1}} $

Show Answer

Answer:

Correct Answer: C

Solution:

Potential energy stored in the rubber cord catapult will be converted into kinetic energy of mass. $ \frac{1}{2}mv^{2}=\frac{1}{2}\frac{YAl^{2}}{L} $

Therefore $ v=\sqrt{\frac{YAl^{2}}{mL}} $

$ =\sqrt{\frac{5\times 10^{8}\times 25\times {{10}^{-6}}\times {{(5\times {{10}^{-2}})}^{2}}}{5\times {{10}^{-3}}\times 10\times {{10}^{-2}}}}=250\ m/s $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें