Physics Elasticity Question 25

Question: The pressure applied from all directions on a cube is P. How much its temperature should be raised to maintain the original volume ? The volume elasticity of the cube is $ \beta $ and the coefficient of volume expansion is $ \alpha $

Options:

A) $ \frac{P}{\alpha \beta } $

B) $ \frac{P\alpha }{\beta } $

C) $ \frac{P\beta }{\alpha } $

D) $ \frac{\alpha \beta }{P} $

Show Answer

Answer:

Correct Answer: A

Solution:

If coefficient of volume expansion is $ \alpha $ and rise in temperature is $ \Delta \theta $ then $ \Delta V=V\alpha \Delta \theta $

Therefore $ \frac{\Delta V}{V}=\alpha \Delta \theta $ Volume elasticity $ \beta =\frac{P}{\Delta V/V} $

$ =\frac{P}{\alpha \Delta \theta } $

Therefore $ \Delta \theta =\frac{P}{\alpha \beta } $