Physics Elasticity Question 25
Question: The pressure applied from all directions on a cube is P. How much its temperature should be raised to maintain the original volume ? The volume elasticity of the cube is $ \beta $ and the coefficient of volume expansion is $ \alpha $
Options:
A) $ \frac{P}{\alpha \beta } $
B) $ \frac{P\alpha }{\beta } $
C) $ \frac{P\beta }{\alpha } $
D) $ \frac{\alpha \beta }{P} $
Show Answer
Answer:
Correct Answer: A
Solution:
If coefficient of volume expansion is $ \alpha $ and rise in temperature is $ \Delta \theta $ then $ \Delta V=V\alpha \Delta \theta $
Therefore $ \frac{\Delta V}{V}=\alpha \Delta \theta $ Volume elasticity $ \beta =\frac{P}{\Delta V/V} $
$ =\frac{P}{\alpha \Delta \theta } $
Therefore $ \Delta \theta =\frac{P}{\alpha \beta } $