Physics Two Dimensional Motion Question 65

Question: A particle is projected with a certain velocity at an angle $ \alpha $ above the horizontal from the foot of an inclined plane of inclination$ 30{}^\circ $ . If the particle strikes the plane normally, then $ \alpha $ is equal to

Options:

A) $ {{30}^{{}^\circ }}+{{\tan }^{-1}}( \frac{\sqrt{3}}{2} ) $ B) $ 45^{0} $ C) $ 60^{0} $ D) $ 30^{0}+{{\tan }^{-1}}(2\sqrt{3}) $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ t _{AB} $ =time of flight of projectile $ =\frac{2u\sin (\alpha -30{}^\circ )}{g\cos 30{}^\circ } $ Now component of velocity along the plane becomes Zero at point B. $ 0=u\cos (\alpha -30{}^\circ )-gsin30{}^\circ \times T $ Or $ u\cos (\alpha -30{}^\circ )-gsin30{}^\circ \times \frac{2u\sin (\alpha -30{}^\circ )}{g\cos 30{}^\circ } $ Or $ \tan (\alpha -30{}^\circ )=\frac{\cot 30{}^\circ }{2}=\frac{\sqrt{3}}{2} $ Or $ \alpha =30{}^\circ +{{\tan }^{-1}}( \frac{\sqrt{3}}{2} ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें