Physics Two Dimensional Motion Question 137

Question: The condition for $ \overrightarrow{A}+\overrightarrow{B} $ to be perpendicular to $ \overrightarrow{A}-\overrightarrow{B} $ is that

Options:

A) $ |\overrightarrow{A}|,,=,,|\overrightarrow{B}| $ B)$ \overrightarrow{\text{A}},,\text{=},,\overrightarrow{\text{B}} $ C) $ \overrightarrow{\text{B}}\text{ =},,\text{0 }!!~!! $ D)$ !!|!!,\overrightarrow{\text{A}},\text{+},\overrightarrow{\text{B}},!!|!!,,\text{= }!!|!!,\overrightarrow{\text{A}}-\overrightarrow{\text{B}},,!!|!! $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ \text{(\vec{A}+\vec{B})}\text{.(\vec{A}}-\text{\vec{B})}=0 $ or $ \vec{A},\text{.},\text{\vec{A}+\vec{B}},\text{.},\vec{A}-\vec{A},\text{.},\vec{B}-\vec{B},\text{.},\vec{B}=0 $

$ \

Therefore ,,,\text{A=B}\text{.} $