Physics Two Dimensional Motion Question 138

Question: Let $ \vec{a} $ and $ \vec{b} $ be two unit vectors. If the vectors $ \vec{c}=\hat{a}+2\hat{b} $ and $ \vec{d}=,,5\hat{a}-2\hat{b} $ are perpendicular to each other, then the angle between $ \hat{a} $ and $ \hat{b} $ is:

Options:

A) $ \frac{\pi }{6} $ B)$ \frac{\pi }{2} $ C) $ \frac{\pi }{3} $ D)$ \frac{\pi }{4} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Let $ \vec{c}=\hat{a}+2\hat{b} $ and $ \vec{d}=5\hat{a}-4\hat{b} $ Since $ \vec{c} $ and $ \vec{d} $ are perpendicular to each other $ \

Therefore ,,\vec{c}\cdot\vec{d}=0\Rightarrow ( \hat{a}+2,\hat{b} ).( 5\hat{a}-4,\hat{b} )=0 $ $ \Rightarrow 5+\text{6},\hat{a}\cdot\hat{b}-8=0\text{}( \

Therefore \vec{a}\cdot\vec{a}=1$ $ \Rightarrow \hat{a}\cdot\hat{b}=\frac{1}{2}\Rightarrow \theta =\frac{\pi }{3} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें