Physics Two Dimensional Motion Question 138
Question: Let $ \vec{a} $ and $ \vec{b} $ be two unit vectors. If the vectors $ \vec{c}=\hat{a}+2\hat{b} $ and $ \vec{d}=,,5\hat{a}-2\hat{b} $ are perpendicular to each other, then the angle between $ \hat{a} $ and $ \hat{b} $ is:
Options:
A) $ \frac{\pi }{6} $ B)$ \frac{\pi }{2} $ C) $ \frac{\pi }{3} $ D)$ \frac{\pi }{4} $
Show Answer
Answer:
Correct Answer: C
Solution:
[c] Let $ \vec{c}=\hat{a}+2\hat{b} $ and $ \vec{d}=5\hat{a}-4\hat{b} $ Since $ \vec{c} $ and $ \vec{d} $ are perpendicular to each other $ \
Therefore ,,\vec{c},\text{.},\text{\vec{d}=0}\Rightarrow ( \text{\hat{a}+2},\hat{b} ).( \text{5\hat{a}}-4,\hat{b} )=0 $ $ \Rightarrow 5+\text{6},\hat{a},\text{.\hat{b}}-8=0\text{}( \
Therefore \vec{a},\text{.},\vec{a},\text{=1} ) $ $ \Rightarrow \hat{a},\text{.\hat{b}=}\frac{1}{2}\Rightarrow \theta =\frac{\pi }{3} $