Physics Two Dimensional Motion Question 139

Question: A particle crossing the origin of co-ordinates at time t = 0, moves in the xy-plane with a constant acceleration a in the y-direction. If its equation of motion is $ \text{y = b}{{\text{x}}^{\text{2}}} $ (b is a constant), its velocity component in the x-direction is

Options:

A) $ \sqrt{\frac{2\text{b}}{\text{a}}} $ B)$ \sqrt{\frac{\text{a}}{2\text{b}}} $ C) $ \sqrt{\frac{\text{a}}{\text{b}}} $ D)$ \sqrt{\frac{\text{b}}{\text{a}}} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ \text{y = b}{{\text{x}}^{\text{2}}} $ . Differentiating w.r.t to t an both $ \frac{\text{dy}}{\text{dx}}=\text{b2x}\frac{\text{dx}}{\text{dt}}\Rightarrow {{v _{y}}=2\text{bx}{{v _{x}} $ Again differentiating w.r.t to t on both sides we get $ \frac{\text{d}{{v _{y}}}{\text{dt}}=2\text{b}{{\text{v}} _{\text{x}}}\frac{\text{dx}}{\text{dt}}+2\text{bx}\frac{\text{d}{{v _{x}}}{\text{dt}}=2\text{bv} _{x^{2}+0 $ [$ \frac{\text{d}{{v _{x}}}{\text{dt}}=0, $ because the particle had constant acceleration along y-direction] $ \text{Now, }\frac{\text{d}{{v _{y}}}{\text{dt}}=\text{a=2bv} _{x^{2}; $

$ \text{v} _{x^{2}=\frac{\text{a}}{2\text{b}}\Rightarrow {{v _{x}}=\sqrt{\frac{\text{a}}{\text{2b}}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें