Physics Two Dimensional Motion Question 211

A balloon starts rising from the surface of the earth. The ascension rate is constant and equal to $ {{\text{v}} _{\text{0}}} $ . Due to the wind the balloon gathered the horizontal velocity component $ {{\text{v}} _{\text{x}}}\text{= ay} $ , where a is a constant and y is the height of ascent. The tangential acceleration of the balloon is zero but

Options:

A) $ \frac{a^{2}y}{v _{0}} $

B) $\frac{a^2 y}{\sqrt{1 + (\text{ay} + v_0)^2}}$

C) $\frac{a^2 y}{\sqrt{1 + v_0^2}}$

D) $ \frac{a^2 v_0}{\sqrt{1 + (2y + a)^2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Since velocity in vertical direction is zero,

Therefore ${\text{a}}{y} = \frac{d{v{y}}}{dt} = 0$

The acceleration in the horizontal direction,

$ a _{x}=\frac{dv _{x}}{dt}=\frac{d(av _{0}t)}{dt}=a v _{0} $

$ a=\sqrt{a _{x}^{2}+a _{y}^{2}}=\sqrt{{{( av _{0} )}^{2}}+0}=av _{0} $

The total acceleration is $ a_0 $ and directed along the horizontal direction.

Let $ \theta $ be the angle that the resultant velocity makes with horizontal, then

Normal acceleration $ a _{n}=a\cos \theta $ and tangential acceleration

$ a _{t}=a\cos \theta ,\text{ we have }x=\frac{a y^{2}}{2{{\text{v}} _{\text{0}}}} $ .

$ \text{or }\text{y=}\sqrt{\frac{2xv _{0}^{2}}{a}} $

Differentiating both sides of equation (iii) w.r.t. x,

We get $ 1=\frac{a}{2v _{0}}\times 2y\times \frac{dy}{dx} $

$ \text{or }\frac{dy}{dx}=\frac{v _{0}}{a x}=\tan \theta $

Now $ a _{x}=a\sin \theta =av _{0}\times \frac{( v _{0}/a_y )}{\sqrt{1+{{( \frac{v _{0}}{a_y} )}^{2}}}} $

$ =\frac{av _{0}}{\sqrt{1+{{( \frac{ay}{v _{0}} )}^{2}}}} $

$ a _{t}=a\cos \theta =av _{0}\times \frac{1}{\sqrt{1+{{( \frac{v _{0}}{cy} )}^{2}}}}=av _{0} $

$ \frac{ay}{\sqrt{(ay)^2 + v_0^2}} = \frac{q^2 y}{\sqrt{1 + \left(\frac{ay}{v_0}\right)^2}}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें