Properties Of Solids And Liquids Question 195

Question: A liquid is kept in a cylindrical vessel which is being rotated about a vertical axis through the centre of the circular base. If the radius of the vessel is r and angular velocity of rotation is $ \omega $ , then the difference in the heights of the liquid at the centre of the vessel and the edge is

Options:

A) $ \frac{r\omega }{2g} $

B) $ \frac{r^{2}{{\omega }^{2}}}{2g} $

C) $ \sqrt{2gr\omega } $

D)$ \frac{{{\omega }^{2}}}{2gr^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

From Bernoulli’s principle,

$ P _{A}+\frac{1}{2}\rho v _{A}^{2}+\rho gh _{A}=P _{B}+\frac{1}{2}\rho v _{B}^{2}+\rho gh _{B} $

Here,$ h _{A}=h _{B} $

$ \therefore \ P _{A}+\frac{1}{2}\rho v _{A}^{2}=P _{B}+\frac{1}{2}\rho v _{B}^{2} $

therefore $ P _{A}-P _{B}=\frac{1}{2}\rho[v _{B}^{2}-v _{A}^{2}] $

Now,$ v _{A}=0,\ v _{B}=r\omega $

and $ P _{A}-P _{B}=hdg $

$ \therefore \ \ h=\frac{1}{2}dr^{2}{{\omega }^{2}} $ or $ h=\frac{r^{2}{{\omega }^{2}}}{2g} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें