Properties Of Solids And Liquids Question 115

Question: The coefficient of linear expansion of crystal in one direction is $ {\alpha _{1}} $ and that in every direction perpendicular to it is $ {\alpha _{2}} $ . The coefficient of cubical expansion is

Options:

A) $ {\alpha _{1}}+{\alpha _{2}} $

B) $ 2{\alpha _{1}}+{\alpha _{2}} $

C) $ {\alpha _{1}}+2{\alpha _{2}} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ V=V _{0}(1+\gamma \Delta \theta ) $

$ L^{3}=L _{0}(1+{\alpha _{1}}\Delta \theta )L _{0}^{2}{{(1+{\alpha _{2}}\Delta \theta )}^{2}} $

$ =L _{0}^{3}(1+{\alpha _{1}}\Delta \theta ){{(1+{\alpha _{2}}\Delta \theta )}^{2}} $

Since $ L _{0}^{3}=V _{0} $ and $ L^{3}=V $

Hence $ 1+\gamma \Delta \theta =(1+{\alpha _{1}}\Delta \theta ){{(1+{\alpha _{2}}\Delta \theta )}^{2}} $

$ \tilde{=}(1+{\alpha _{1}}\Delta \theta )(1+2{\alpha _{2}}\Delta \theta ) $

$ \tilde{=}(1+{\alpha _{1}}\Delta \theta +2{\alpha _{2}}\Delta \theta ) $

therefore g = a1 + 2a2



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें