Properties Of Solids And Liquids Question 455

Question: A body cools in a surrounding which is at a constant temperature of $ {\theta _{0}} $ . Assume that it obeys Newton’s law of cooling. Its temperature$ \theta $ is plotted against time t. Tangents are drawn to the curve at the points$ P( \theta ={\theta _{2}} ) $ and$ Q( \theta ={\theta _{1}} ) $ . These tangents meet the time axis at angle of$ {\phi _{2}} $ and $ {\phi _{1}} $ , as shown, then

Options:

A) $ \frac{\tan {\phi _{2}}}{\tan {\phi _{1}}}=\frac{{\theta _{1}}-{\theta _{0}}}{{\theta _{2}}-{\theta _{0}}} $

B) $ \frac{\tan {\phi _{2}}}{\tan {\phi _{1}}}=\frac{{\theta _{2}}-{\theta _{0}}}{{\theta _{1}}-{\theta _{0}}} $

C) $ \frac{\tan {\phi _{1}}}{\tan {\phi _{2}}}=\frac{{\theta _{1}}}{{\theta _{2}}} $

D) $ \frac{\tan {\phi _{1}}}{\tan {\phi _{2}}}=\frac{{\theta _{2}}}{{\theta _{1}}} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] For 0-t plot, rate of cooling $ =\frac{dQ}{dt}= $ slope of the curve. $ AT P,\frac{dQ}{dt}=| tan( 180{}^\circ -{\phi _{2}} ) | $

$ =tan{\phi _{2}}=k( {\theta _{2}}-{\theta _{1}} ) $ where k= constant. At Q, $ \frac{dQ}{dt} =| tan(180{}^\circ -{\varphi _{1}}) |= tan{\varphi _{1}}, = k({\theta _{1}}-{\theta _{0}}) $

$ \therefore \frac{\tan {\phi _{2}}}{\tan {\phi _{1}}}=\frac{{\theta _{2}}-{\theta _{0}}}{{\theta _{1}}-{\theta _{0}}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें