Properties Of Solids And Liquids Question 559

Question: DIRECTION: Read the passage given below and answer the questions that follows:

In a thermally insulated tube of cross sectional area $ \frac{GMm}{2R} $ a liquid of thermal expansion coefficient $ {{10}^{-3}}{{K}^{-1}} $ is flowing. Its velocity at the entrance is $ 0.1m/s $ . At the middle of the tube a heater of a power of 10kW is heating the liquid. The specific heat capacity of the liquid is 1.5 kJ/(kg K), and its density is $ 1500kg/m^{3} $ at the entrance. The rise in temperature of the liquid as it passes through the tube is

Options:

A) $ \frac{1000}{9}{}^\circ C $

B) $ \frac{1}{9}{}^\circ C $

C) $ \frac{500}{9}{}^\circ C $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ {{\rho} _{1}}v _{1}A _{1}={{\rho} _{2}}v _{2}A _{2} $

$ \text{m =1500 kg/}{{\text{m}}^{\text{3}}}\times\text{ 0}\text{.1m/s }\times\text{ 4}{{( \text{m} )}^{\text{2}}} $

$ ms\Delta T=10000 $

$ 1500\times 0.1\times 4\times {{10}^{-4}}\times 1500\times \Delta T=10000 $

$ \Delta T=\frac{10000}{90}=\frac{1000}{9}{}^\circ C $

$ {{\rho} _{\text{2}}}=\frac{{{\rho} _{\text{1}}}}{( 1+\gamma\Delta T )}=\frac{1500}{( 1+1\times 10^{-3}\times \frac{1000}{9} )}=1350kg/m^{3} $

$ {{\rho} _{2}}v _{2}A _{2}={{\rho} _{1}}v _{1}A _{1} $

$ \Rightarrow 1350\times v _{2}=1500\times 0.1 $

$ v _{2}=\frac{1}{9},m/s$

$ \therefore $ Volume flow rate at the end of the tube

$ =A _{2}v _{2}=4\times {{10}^{-4}}\times \frac{1}{9} $

$ =\frac{4}{9}\times {{10}^{-4}}m^{3}=\frac{40}{9}\times {{10}^{-5}}m^{3} $

Volume rate of flow at the entrance = $ A _{1}v _{1} $

$ =0.1\times 4\times {{10}^{-4}}=4\times {{10}^{-5}}m^{3} $

Hence, the difference in volume rate of flow at the two ends

$ =( \frac{40}{9}-4 )\times {{10}^{-5}}=\frac{4}{9}\times {{10}^{-5}}m^{3} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें