Properties Of Solids And Liquids Question 561

Question: How much bigger is the volume rate of flow at the end of the tube than at the entrance in cubic meters?

Options:

A) $ 9\times {{10}^{-5}} $

B) $ \frac{1}{3}\times {{10}^{-5}} $

C) $ \frac{4}{9}\times {{10}^{-5}} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ {{\rho} _{1}}v _{1}A _{1}={{\rho} _{2}}v _{2}A _{2} $

$ \text{m =1500 kg/}{{\text{m}}^{\text{3}}}\times\text{ 0}\text{.1m/s }\times\text{ 4}{{( \text{m} )}^{\text{2}}} $

$ ms\Delta T=10000 $

$ 1500\times 0.1\times 4\times {{10}^{-4}}\times 1500\times \Delta T=10000 $

$ \Delta T=\frac{10000}{90}=\frac{1000}{9}{}^\circ C $

$ {{\rho} _{\text{2}}}=\frac{{{\rho} _{\text{1}}}}{( 1+\gamma\Delta T )}=\frac{1500}{( 1+1\times 10^{-3}\times \frac{1000}{9} )}=1350kg/m^{3} $

$ {{\rho} _{2}}v _{2}A _{2}={{\rho} _{1}}v _{1}A _{1} $

$ \Rightarrow 1350\times v _{2}=1500\times 0.1 $

$ v _{2}=\frac{1}{9},m/s$

$ \therefore $

$ Volume flow rate at the end of the tube

$ =A _{2}v _{2}=4\times {{10}^{-4}}\times \frac{1}{9} $

$ =\frac{4}{9}\times {{10}^{-4}}m^{3}=\frac{40}{9}\times {{10}^{-5}}m^{3} $

Volume rate of flow at the entrance = $ A _{1}v _{1} $

$ =0.1\times 4\times {{10}^{-4}}=4\times {{10}^{-5}}m^{3} $

Hence, the difference in volume rate of flow at the two ends

$ =( \frac{40}{9}-4 )\times {{10}^{-5}}=\frac{4}{9}\times {{10}^{-5}}m^{3} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें