Properties Of Solids And Liquids Question 260

Question: A tank has a hole at its bottom. The time needed to empty the tank from level $ h _{1} $ to $ h _{2} $ will be proportional to

Options:

A) $ h _{1}-h _{2} $

B) $ h _{1}+h _{2} $

C) $ \sqrt{h _{1}}-\sqrt{h _{2}} $

D) $ \sqrt{h _{1}}+\sqrt{h _{2}} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ Let-\frac{dh}{dt} $

represent the rate of descent of water level, let A and a represent the cross-sectional areas of the container and hole respectively

Then, $ -A\frac{dh}{dt}=a\sqrt{2gh} $ Or $ dt=-k\frac{dh}{\sqrt{n}}dt $

Or $ \int _{0}^{t}{dt=-k\int _{h _{1}}^{h _{2}}{\frac{1}{\sqrt{h}}dh}} $

Or $ t=-k{{\left| \frac{{{h}^{-\frac{1}{2}+1}}}{-\frac{1}{2}+1} \right|} _{h _{1}}}^{h _{2}} $

Or $ t=-2k[\sqrt{h _{2}}-\sqrt{h _{1}}] $ Or $ t\propto (\sqrt{h _{1}}-\sqrt{h _{2}}) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें