Rotational Motion Question 138

Question: A small solid sphere of radius $r$ rolls down an incline without slipping which ends into a vertical loop of radius $R$ . Find the height above the base so that it just loops the loop

Options:

A) $\frac{5}{2}R$

B) $\frac{5}{2}(R-r)$

C) $\frac{25}{10}(R-r)$

D) $\frac{27}{10}R-\frac{17r}{10}$

Show Answer

Answer:

Correct Answer: D

Solution:

[d]The minimum velocity at P, top of the loop, should be

$v=\sqrt{g(R-r)}$ , if the sphere keeps on rolling at top

$v=\omega R$

$mgh=\frac{1}{2}mv^{2}+\frac{1}{2}I{{\omega }^{2}}+mg(2R-r)$

$=\frac{1}{2}mg(R-r)+\frac{1}{2}( \frac{2}{5} )mR^{2}2{{\omega }^{2}}+mg(2R-r)$

$=\frac{7}{10}mg(R-r)+mg(2R-r)$

$\omega R=v=\sqrt{g(R-r)} $

$=\frac{mg}{10}(27R-17r)orh=\frac{1}{10}(27R-17r)$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें