Rotational Motion Question 148

Question: A solid cylinder of mass m & radius R rolls down inclined plane without slipping. The speed of C.M. when it reaches the bottom is

Options:

A) $\sqrt{2gh}$

B) $\sqrt{4gh/3}$

C) $\sqrt{3/4gh}$

D) $\sqrt{4gh}$

Show Answer

Answer:

Correct Answer: B

Solution:

[b] By energy conservation

$ (K .E)_i+(P .E)_i=(K .E)_f+(P .E)_f $

$ (K .E)_i=0,(P .E)_i=m g h,(P .E)_f=0 $

$ (K .E)_f={ } _{1 / 2} I \omega^2+{ }_1{ }_2 m v _{c m}^2 $

$\text { Where I } $ moment of inertia=$ 1 / 2 m R^2 \text { (for solid cylinder) so } $

$ m g h={ }^1 / 2\left(1 / 2 m R^2\right)\left(\frac{v^2 c m}{R^2}\right)+{ }_1{ }_2 m v _{c m}^2 \text {.} $

$ \Rightarrow \quad v _{c m}=\sqrt{4 g h / 3} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें