Rotational Motion Question 198

Question: Consider a uniform square plate of side ‘a’ and mass ’m’. The moment of inertia of this plate about an axis perpendicular to its plane and passing through one of its comers is

Options:

A) $\frac{5}{6}ma^{2}$

B) $\frac{1}{12}ma^{2}$

C) $\frac{7}{12}ma^{2}$

D) $\frac{2}{3}ma^{2}$

Show Answer

Answer:

Correct Answer: D

Solution:

[d]

$ I _{y_1}=\frac{M R^2}{4} $

$ \therefore I^{\prime} y_1=\frac{M R^2}{4}+M R^2=\frac{5}{4} M R^2 .$

$ I _{y_2}=\frac{M R^2}{2} $

$ \therefore I _{y_2}^{\prime}=\frac{M R^2}{2}+M R^2=\frac{3}{2} M R^2 $

$ I^{\prime} y_1=M K_1^2, I^{\prime} y_2=M K_2^2 $

$ \therefore \quad \frac{K_1^2}{K_2^2}=\frac{I_{y_1}^{\prime}}{I_{y_2}^{\prime}} \Rightarrow K_1: K_2=\sqrt{5}: \sqrt{6} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें