Rotational Motion Question 2

Question: Initial angular velocity of a circular disc of mass M is C $ {\omega _{1}} $ . Then, two small spheres of mass m are attached gently to two diametrically opposite points on the edge of the disc. What is the final angular velocity of the disc?

[AIEEE 2002]

Options:

A) $ ( \frac{M+m}{M} ){\omega_1} $

B) $ ( \frac{M+m}{m} ){\omega_1} $

C) $ ( \frac{M}{M+4m} ){\omega_1} $

D) $ ( \frac{M}{M+2m} ){\omega_1} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Conservation of angular momentum gives $ \frac{1}{2}MR^{2}{\omega_1}=( \frac{1}{2}MR^{2}+2MR^{2} ){\omega_2} $ $ (\because l _1{\omega_1}=l _2{\omega_2} $ and $ l _1=\frac{1}{2}mR^{2} $ s $ l _2=\frac{1}{2}mR^{2}+2mR^{2}) $

$ \Rightarrow \frac{1}{2}MR^{2}{\omega_1}=\frac{1}{2}R^{2}(M+4m){\omega_2} $

$ \therefore $ $ {\omega_2}=( \frac{M}{M+4m} ){\omega_1} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें