Rotational Motion Question 20

Question: A small particle of mass m is projected at an angle $ \theta $ with the x-axis with an initial velocity v0 in the $ x-y $ plane . At a time $ t<\frac{v _0\sin \theta }{g}, $ the angular momentum of the particle is -

[AIEEE 2010]

Options:

A) $ \frac{1}{2}mgv _0t^{2}\cos \theta \hat{i} $

B) $ -mgv _0t^{2}\cos \theta \hat{j} $

C) $ mgv _0t\cos \theta \hat{k} $

D) $ -\frac{1}{2}mgv _0t^{2}\cos \theta \hat{k} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] at any time t So, where $ \hat{i},\hat{j} $ and $ \hat{k} $ are unit vectors along $ x,y $ and z-axis respectively.

    $ \mathbf{L} = m(\mathbf{r} \times \mathbf{v}) = -\frac{1}{2} m g v_0 t^2 \cos(\theta) \mathbf{k} $

    $\mathbf{r} = v_0 \cos(\theta) t \mathbf{i} + \left(v_0 \sin(\theta) t - \frac{1}{2} g t^2\right) \mathbf{j} $

    (m) represents mass.

    $\mathbf{v} = v_0 \cos(\theta) \mathbf{i} + \left(v_0 \sin(\theta) - g t\right) \mathbf{j} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें