Rotational Motion Question 206

Question: The moment of inertia of a hollow thick spherical shell of mass M and its inner radius $R _{1}$ and outer radius $R _{2}$ about its diameter is

Options:

A) $\frac{2M}{5}\frac{(R _{2}^{5}-R _{1}^{5})}{(R _{2}^{5}-R _{1}^{3})}$

B) $\frac{2M}{5}\frac{(R _{2}^{5}-R _{1}^{5})}{(R _{2}^{3}-R _{1}^{3})}$

C) $\frac{4M}{5}\frac{(R _{2}^{5}-R _{1}^{5})}{(R _{2}^{3}-R _{1}^{3})}$

D) $\frac{4M}{3}\frac{(R _{2}^{5}-R _{1}^{5})}{(R _{2}^{3}-R _{1}^{3})}$

Show Answer

Answer:

Correct Answer: A

Solution:

[a]

$\rho =\frac{M}{\frac{4}{3}\pi (R _{2}^{3}-R _{1}^{3})}$ $I _{shell}=\frac{2}{5}M _{2}R _{2}^{2}-\frac{2}{5}M _{1}R _{1}^{2}$ $ –(1)

$M _{2}=\rho \times \frac{4}{3}\pi R _{2}^{3}$ $=\frac{MR _{2}^{3}}{(R _{2}^{3}-R _{1}^{3})};M _{1}=\frac{MR _{1}^{3}}{R _{2}^{3}-R _{1}^{3}}$

Putting values of 1 $M_{1}$ and $M_{2}$ in eq.(1),

$I _{shell}=\frac{2M}{5}\frac{(R _{2}^{5}-R _{1}^{5})}{(R _{2}^{3}-R _{1}^{3})}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें