Rotational Motion Question 211

Question: The moment of inertia of a body about a given axis is$1.2kgm^{2}$ . Initially, the body is at rest. In order to produce a rotational kinetic energy of 1500 joule, an angular acceleration of$25radian/{{\sec }^{2}}$ must be applied about that axis for a duration of

Options:

A) 4 seconds

B) 2 seconds

C) 8 seconds

D) 10 seconds

Show Answer

Answer:

Correct Answer: B

Solution:

[b]

$ I=1.2 \mathrm{~kg} \mathrm{~m}^2, E_r=1500 J $

$ \alpha=25 \mathrm{rad} / \mathrm{sec}^2, \omega_1=0, t=\text { ? } $

$ A s E_r=\frac{1}{2} I \omega^2, \omega=\sqrt{\frac{2 E_r}{I}} $$ =\sqrt{\frac{2 \times 1500}{1.2}}=50 \mathrm{rad} / \mathrm{sec} $

$ \text { From } \omega_2=\omega_1+\alpha t $

$ 50=0+25 t, t=2 \text { seconds } $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें