Rotational Motion Question 52

Question: A solid cylinder of mass M and radius R rolls without slipping down an inclined plane of length L and height h. What is the speed of its centre of mass when the cylinder reaches its bottom?

[AIPMT 2003]

Options:

A) $ \sqrt{\frac{4}{3}gh} $

B) $ \sqrt{4gh} $

C) $ \sqrt{2gh} $

D) $ \sqrt{\frac{3}{4}gh} $

Show Answer

Answer:

Correct Answer: A

Solution:

Potential energy of cylinder at the top will be converted into rotational kinetic energy and translational kinetic energy.

So, energy conservation gives.

$ Mgh=\frac{1}{2}Mv^{2}+\frac{1}{2}I{{\omega }^{2}} $

$ =\frac{1}{2}Mv^{2}+\frac{1}{2}\frac{MR^{2}}{2}\frac{v^{2}}{R^{2}}$

$( \because I _{cylinder}=\frac{MR^{2}}{2} ) $

So, $ Mgh=\frac{1}{2}Mv^{2}+\frac{1}{4}Mv^{2} $

or $ Mgh=\frac{3}{4}Mv^{2} $

or $ v^{2}=\frac{4}{3}gh $

or $ v=\sqrt{\frac{4}{3}gh} $

Note: In a collision of two bodies whether it is perfectly elastic or inelastic, linear momentum is always conserved but kinetic energy need not to be conserved.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें