Rotational Motion Question 52

Question: A solid cylinder of mass M and radius R rolls without slipping down an inclined plane of length L and height h. What is the speed of its centre of mass when the cylinder reaches its bottom?

[AIPMT 2003]

Options:

A) $ \sqrt{\frac{4}{3}gh} $

B) $ \sqrt{4gh} $

C) $ \sqrt{2gh} $

D) $ \sqrt{\frac{3}{4}gh} $

Show Answer

Answer:

Correct Answer: A

Solution:

Potential energy of cylinder at the top will be converted into rotational kinetic energy and translational kinetic energy.

So, energy conservation gives.

$ Mgh=\frac{1}{2}Mv^{2}+\frac{1}{2}I{{\omega }^{2}} $

$ =\frac{1}{2}Mv^{2}+\frac{1}{2}\frac{MR^{2}}{2}\frac{v^{2}}{R^{2}}$

$( \because I _{cylinder}=\frac{MR^{2}}{2} ) $

So, $ Mgh=\frac{1}{2}Mv^{2}+\frac{1}{4}Mv^{2} $

or $ Mgh=\frac{3}{4}Mv^{2} $

or $ v^{2}=\frac{4}{3}gh $

or $ v=\sqrt{\frac{4}{3}gh} $

Note: In a collision of two bodies whether it is perfectly elastic or inelastic, linear momentum is always conserved but kinetic energy need not to be conserved.



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index