Rotational Motion Question 54

Question: A round disc of moment of inertia $ I _2 $ about its axis perpendicular to its plane and passing through its centre is placed over another disc of moment of inertia $ I _1 $ rotating with an angular velocity $ \omega $ about the same axis. The final angular velocity of the combination of discs is:

[AIPMT (S) 2004]

Options:

A) $ \frac{I _2\omega }{I _1+I _2} $

B) $ \omega $

C) $ \frac{I _1\omega }{I _1+I _2} $

D) $ \frac{(I _1+I _2)\omega }{I _1} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Key Idea: When no external torque acts on a system of particles, then the total angular momentum of the system remains always a constant.

The angular momentum of a disc of moment of inertia $ I _1 $ and rotating about its axis with angular velocity $ \omega $ is

$ L _1=I _1\omega $

When a round disc of moment of inertia $ I _2 $ is placed on first disc, then angular momentum of the combination is

$ L _2=(I _1+I _2)\omega $

In the absence of any external torque, angular momentum remains conserved i.e.,

$ L _1=L _2 $

$ I _1\omega =(I _1+I _2)\omega $

$ \Rightarrow $ $ \omega ‘=\frac{I _2\omega }{I+I _2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें