Rotational Motion Question 56

Question: Consider a system of two particles having masses $ m _1 $ and $ m _2 $ . If the particle of mass $ m _1 $ is pushed towards the mass centre of particles through a distance d, by what distance would the particle of mass $ m _2 $ move so as to keep the mass centre of particles at the original position?

[AIPMT (S) 2004]

Options:

A) $ \frac{m _1}{m _1+m _2}d $

B) $ \frac{m _1}{m _2}d $

C) $ d $

D) $ \frac{m _2}{m _1}d $

Show Answer

Answer:

Correct Answer: B

Solution:

  • The system of two given particles of masses $ m _1 $ and $ m _2 $.

    Initially the centre of mass

    $ r _{CM}=\frac{m _1r _1+m _2r _2}{m _1+m _2} $ …(1)

    When mass $ m _1 $ moves towards centre of mass by a distance d, then let mass $ m _2 $ moves a distance d’ away from CM to keep the CM in its initial position.

    So, $ r _{CM}=\frac{m _1(r _1-d)+m _2(r _2+d’)}{m _1+m _2} $

    Equating Eqs.

    (i) and (ii), we get

    $ \frac{m _1r _1+m _2r _2}{m _1+m _2}=\frac{m _1(r _1-d)+m _2(r _2+d’)}{m _1+m _2} $

    $ \Rightarrow $ $ -m _1d+m _2d’=0 $

    $ \Rightarrow $ $ d’=\frac{m _1}{m _2}d $

    NOTE: If both the masses are equal i.e., $ m _1=m _2, $ then second mass will move a distance equal to the distance at which first mass is being displaced.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें