Rotational Motion Question 56
Question: Consider a system of two particles having masses $ m _1 $ and $ m _2 $ . If the particle of mass $ m _1 $ is pushed towards the mass centre of particles through a distance d, by what distance would the particle of mass $ m _2 $ move so as to keep the mass centre of particles at the original position?
[AIPMT (S) 2004]
Options:
A) $ \frac{m _1}{m _1+m _2}d $
B) $ \frac{m _1}{m _2}d $
C) $ d $
D) $ \frac{m _2}{m _1}d $
Show Answer
Answer:
Correct Answer: B
Solution:
- 
The system of two given particles of masses $ m _1 $ and $ m _2 $. Initially the centre of mass $ r _{CM}=\frac{m _1r _1+m _2r _2}{m _1+m _2} $ …(1) When mass $ m _1 $ moves towards centre of mass by a distance d, then let mass $ m _2 $ moves a distance dĀ away from CM to keep the CM in its initial position. So, $ r _{CM}=\frac{m _1(r _1-d)+m _2(r _2+d’)}{m _1+m _2} $ Equating Eqs. (i) and (ii), we get $ \frac{m _1r _1+m _2r _2}{m _1+m _2}=\frac{m _1(r _1-d)+m _2(r _2+d’)}{m _1+m _2} $ $ \Rightarrow $ $ -m _1d+m _2d’=0 $ $ \Rightarrow $ $ d’=\frac{m _1}{m _2}d $ NOTE: If both the masses are equal i.e., $ m _1=m _2, $ then second mass will move a distance equal to the distance at which first mass is being displaced. 
 BETA
  BETA 
             
             
           
           
           
          