Rotational Motion Question 57

Question: Three particles, each of mass m grams situated at the vertices of an equilateral triangle ABC of side 1 cm . The moment of inertia of the system about a line AX perpendicular to AB and in the plane of ABC, in gram $ -cm^{2} $ units will be:

[AIPMT (S) 2004]

Options:

A) $ (3/4)ml^{2} $

B) $ 2ml^{2} $

C) $ (5/4)ml^{2} $

D) $ (3/2)ml^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • Moment of inertia of the system about AX is given by

$ MI=m _{A}r_A^{2}+m _{B}r_B^{2}+m _{C}r_C^{2} $

$ MI=m{{(0)}^{2}}+m{{(l)}^{2}}+m{{(l\sin 30^{0})}^{2}} $

$ =ml^{2}+\frac{ml^{2}}{4}=\frac{5}{4}ml^{2} $

Alternative: Moment of inertia of a system about a line OC perpendicular to AB, in the plane of ABC is

$ I _{CO}=m\times 0+m\times {{( \frac{1}{2} )}^{2}}+m\times {{( \frac{1}{2} )}^{2}} $

$ \therefore $ $ I _{CO}=\frac{ml^{2}}{4}+\frac{ml^{2}}{4}=\frac{ml^{2}}{2} $

According to parallel-axis theorem

$ I _{AX}=I _{CO}+Mx^{2} $

where $ x= $ distance of $ AX $ from CO, $ M= $ total mass of system

$ I _{AX}=\frac{ml^{2}}{2}+3m\times {{( \frac{l}{2} )}^{2}} $

$ I _{AX}=\frac{ml^{2}}{2}+\frac{3ml^{2}}{4}=\frac{5}{4}ml^{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें