Rotational Motion Question 59

Question: Two bodies have their moments of inertia $ l $ and $ 2l $ respectively about their axis of rotation. If their kinetic energies of rotation are equal, their angular momenta will be in the ratio:

[AIPMT (S) 2005]

Options:

A) 1 : 2

B) $ \sqrt{2}:1 $

C) 2 : 1

D) $ 1:\sqrt{2} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • As said, $ {{(KE)} _{rot}} $ remains same. i.e., $ \frac{1}{2}I _1\omega _1^{2}=\frac{1}{2}I _2\omega _2^{2} $

$ \Rightarrow $ $ \frac{1}{2I _1}{{(I _1{\omega_1})}^{2}}=\frac{1}{2I _2}{{(I _2{\omega_2})}^{2}} $

$ \Rightarrow $ $ \frac{L_1^{2}}{I _1}=\frac{L_2^{2}}{I _2} $

$ \Rightarrow $ $ \frac{L _1}{L _2}=\sqrt{\frac{I _1}{I _2}} $ but $ I _1=I,I _2=2I $

$ \therefore $ $ \frac{L _1}{L _2}=\sqrt{\frac{I}{2I}}=\frac{1}{\sqrt{2}} $ or $ L _1:L _2=1:\sqrt{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें