Rotational Motion Question 6

Question: A circular disc X of radius R is made from an iron plate of thickness t and another disc Y of radius 4R is made from an iron plate of thickness t/4. Then, the relation between the moment of inertia $ I _{X} $ and $ I _{Y} $ is

[AIEEE 2003]

Options:

A) $ I _{Y}=32I _{X} $

B) $ I _{Y}=16I _{X} $

C) $ I _{Y}=I _{X} $

D)$ I _{Y}=64I _{X} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d]

Mass of disc (X), $ m _{x}=\pi R^{2}t\rho $ $ (m=v\rho =At\rho =\pi R^{2}-\rho ) $

where, $ \rho = $ density of material of disc

$ \therefore $ $ I _{x}=\frac{1}{2}m _{x}R^{2}=\frac{1}{2}\pi R^{2}t\rho R^{2} $ $ I _{x}=\frac{1}{2}\pi \rho tR^{4} $ …

(i) Mass of disc (Y) $ m _{Y}=\pi {{(4R)}^{2}}\frac{t}{4}\rho =4\pi R^{2}t\rho $

and $ I _{Y}=\frac{1}{2}m _{Y}{{(4R)}^{2}}=\frac{1}{2}4R^{2}t\rho .16R^{2} $

$ \Rightarrow $ $ I _{Y}=32\pi t\rho R^{4} $ …(ii)

$ \therefore $ $ \frac{I _{Y}}{I _{X}}=\frac{32\pi t\rho R^{4}}{\frac{1}{2}\pi \rho tR^{4}}=64 $

$ \therefore $ $ I _{Y}=64I _{X} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें