Rotational Motion Question 81

Question: The ratio of the accelerations for a solid sphere (mass m and radius R) rolling down an incline of angle $ \theta $ without slipping and slipping down the incline without rolling is

Options:

A) 5 : 7

B) 2 : 3

C) 2 : 5

D) 7 : 5

Show Answer

Answer:

Correct Answer: A

Solution:

  • A solid sphere rolling without slipping down an inclined plane In this case, $ a _1=\frac{g\sin \theta }{1+\frac{k^{2}}{R^{2}}}=\frac{gsin\theta }{1+\frac{(2/5)R^{2}}{R^{2}}} $

    $ [ \therefore forsolidsphere,K^{2}=\frac{2}{5}R^{2} ] $

    $ =\frac{g\sin \theta }{7/5} $

    $ \Rightarrow $ $ a _1=\frac{5}{7}g\sin \theta $

    For a sphere slipping down an inclined plane

    $ \Rightarrow $ $ a _2=g\sin \theta $

    $ \Rightarrow $ $ \frac{a _1}{a _2}=\frac{5/7g\sin \theta }{g\sin \theta } $

    $ \Rightarrow $ $ \frac{a _1}{a _2}=\frac{5}{7} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें